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Fig. 1: The π0.5 model transfers knowledge from a heterogeneous range of data sources, including other robots, high-level subtask prediction, verbal instructions,
and data from the web, in order to enable broad generalization across environments and objects. π0.5 can control a mobile manipulator to clean kitchens and
bedrooms in new homes that were not present in the training data, performing complex multi-stage behaviors with durations of 10 to 15 minutes.

Abstract—In order for robots to be useful, they must perform
practically relevant tasks in the real world, outside of the lab.
While vision-language-action (VLA) models have demonstrated
impressive results for end-to-end robot control, it remains an
open question how far such models can generalize in the wild.
We describe π0.5, a new model based on π0 that uses co-training
on heterogeneous tasks to enable broad generalization. π0.5 uses
data from multiple robots, high-level semantic prediction, web
data, and other sources to enable broadly generalizable real-
world robotic manipulation. Our system uses a combination of
co-training and hybrid multi-modal examples that combine image
observations, language commands, object detections, semantic
subtask prediction, and low-level actions. Our experiments show
that this kind of knowledge transfer is essential for effective
generalization, and we demonstrate for the first time that an
end-to-end learning-enabled robotic system can perform long-

horizon and dexterous manipulation skills, such as cleaning a
kitchen or bedroom, in entirely new homes.

I. INTRODUCTION

Stuff your eyes with wonder... See the world. It’s more
fantastic than any dream made or paid for in factories.

Ray Bradbury, Fahrenheit 451

Open-world generalization represents one of the biggest
open problems in physical intelligence: embodied systems
such as robotic arms, humanoids, and autonomous vehicles
only truly become useful when they can leave the lab and
handle the diverse situations and unexpected events that occur
in the real world. Learning-based systems offer a path to en-
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“close the cabinets” “put the items in the drawer” “wipe the spill” “place the dishes in the sink”

Fig. 2: π0.5 cleaning a new kitchen. The robot is tasked with cleaning a kitchen in a home that was not in the training data. The model is given general tasks
(close the cabinets, put the items in the drawer, wipe the spill, and put the dishes in the sink), which it performs by both predicting subtasks to accomplish
(e.g., pick up the plate) and emitting low-level actions.

abling broad generalization, particularly with recent advances
that have enabled scalable learning systems in domains ranging
from natural language processing [79, 21, 10, 78] to computer
vision [34, 66, 35, 43]. However, the diversity of situations that
a robot might encounter in the real world requires more than
just scale: we need to design training recipes that can provide
the breadth of knowledge that will allow robots to generalize
at many levels of abstraction. For example, if a mobile robot
is asked to clean up a kitchen that it has never seen before,
some behaviors generalize readily if they are well represented
in the data with a sufficient range of scenes and objects (e.g.,
picking up a knife or plate), others might require adapting or
modifying existing skills to use them in a new way or in a
new sequence, and yet others might require understanding the
semantics of the scene based on prior knowledge (e.g., which
drawer to open, or which object on the counter is most likely
to be a drying rack). How can we structure a training recipe for
a robotic learning system that can enable this kind of flexible
generalization?

A person can draw on a lifetime of experience to synthesize
appropriate solutions to each of these challenges. Not all of
this experience is firsthand, and not all of it comes from rote
practice – for example, we might use facts that we were told
by others or read in a book, together with bits of insight from
other tasks we have performed in different contexts, combined
with direct experience in the target domain. Analogously, we
might hypothesize that generalizable robotic learning systems
must be able to transfer experience and knowledge from a
variety of information sources. Some of these sources are
firsthand experience with direct relevance to the task at hand,
some require transfer from other robot embodiments, envi-
ronments, or domains, and some represent entirely different
data types, such as verbal instructions, perceptual tasks based
on web data, or prediction of high-level semantic commands.
The heterogeneity of these different sources of data present
a major obstacle, but fortunately recent advances in vision-
language-action (VLA) models provide us with a toolkit that
can make this possible: by casting different modalities into the
same sequence modeling framework, VLAs can be adapted to
train on robot data, language data, computer vision tasks, and
combinations of the above.

In this paper, we leverage this observation to design a co-
training framework for VLAs that can utilize heterogeneous
and diverse knowledge sources to enable broad generalization.

Building on the �0 VLA, we propose to include a range of
different data sources to create the �0:5 model (“pi oh five”),
which can control mobile manipulators to perform a variety
of household tasks even in homes that were never seen during
training. �0:5 draws on experience from many sources: in addi-
tion to a medium-sized dataset collected directly with mobile
manipulators in a variety of real homes (about 400 hours),
�0:5 uses data from other non-mobile robots, data of related
tasks collected under laboratory conditions, training examples
that require predicting “high-level” semantic tasks based on
robot observation, verbal language instructions provided to
the robot by human supervisors, and a variety of multi-modal
examples created from web data, such as image captioning,
question answering, and object localization (see Figure 1).
The overwhelming majority of training examples provided to
�0:5 (97.6% during the first training phase) do not come from
mobile manipulators performing household tasks, but from
these other sources, such as other robots or data from the web.
Nonetheless, �0:5 is able to control mobile manipulators in
entirely new homes not seen during training, perform intricate
tasks such as hanging up towels or making beds, and can
carry out long-horizon manipulation skills 10 to 15 minutes
in length, cleaning an entire kitchen or bedroom based on only
a high-level prompt.

The design of �0:5 follows a simple hierarchical archi-
tecture: we first pre-train the model on the heterogeneous
mixture of training tasks, and then fine-tune it specifically for
mobile manipulation with both low-level action examples and
high-level “semantic” actions, which correspond to predicting
subtask labels such as “pick up the cutting board” or “rear-
range the pillow.” At runtime, during each step of inference,
the model first predicts the semantic subtask, inferring the
behavior that is appropriate to perform next based on the task
structure and the semantics of the scene, and then predicts
the low-level robot action chunk based on this subtask. This
simple architecture provides both the ability to reason about
long-horizon multi-stage tasks and the ability to leverage
different sources of knowledge for the two levels: the low-level
action inference procedure readily benefits from action data
collected by other robots, including simpler static robots in
other environments, while the high-level inference procedure
benefits from semantic examples from the web, high-level
annotation prediction, and even verbal commands that can be
provided to the robot by human “supervisors” that walk the



robot through complex tasks step by step, instructing it (much
like how they might instruct a person) on the appropriate
subtasks to perform to complete a complex task such as
cleaning a room. We illustrate this design in Figure 1.

Our central contribution is a system for training a highly
generalizable VLA,� 0:5, together with a proof of concept
that generalization can emerge from this model when it is
trained on appropriately diverse data. We provide a detailed
empirical evaluation of both� 0:5 's generalization capabilities
and the relevance of different co-training ingredients. To our
knowledge, our work is the �rst to demonstrate an end-to-end
learning-enabled robotic system that can perform long-horizon
and dexterous manipulation skills, such as cleaning a kitchen
or bedroom, in entirely new homes. Our experiments and
comparisons further show that this is enabled by transferring
knowledge from other robots, high-level semantic prediction,
verbal language instruction from human supervisors, web data,
and other sources.

II. RELATED WORK

Generalist robot manipulation policies. Recent works have
demonstrated that broadening the training data distribution for
robot manipulation policies from narrow, single-task datasets
to diverse datasets that span many scenes and tasks [17,
25, 80, 63, 41, 6, 30, 67, 1] allows the resulting poli-
cies to not only solve a wider range of tasks out of the
box, but also improves their ability to generalize tonew
scenes and tasks [9, 63, 62, 22]. Training suchgeneralist
policies requires new modeling approaches that can handle
the scale and diversity of datasets that often span hundreds
of different tasks and scenes. Vision-language-action models
(VLAs) [23, 92, 42, 8, 83, 90, 55, 45, 3, 75, 64, 76, 84, 7, 37]
offer an appealing solution: by �ne-tuning pre-trained vision-
language models for robot control, VLAs can leverage the
semantic knowledge acquired from web-scale pretraining and
bring it to bear on the robotics problem. When combined
with highly expressive action decoding mechanisms like �ow
matching [8], diffusion [55, 84, 52], or advanced action
tokenization schemes [64], VLAs can perform a wide range
of complex manipulation tasks in the real world. However,
despite impressive language following abilities, VLAs are still
typically evaluated in environments that closely match their
training data. While some studies suggest that simple skills
like picking up objects or opening drawers can be made to
generalize simply by collecting robot data in a broader set
of environments [14, 67, 28, 49, 64], it is challenging to
apply the same approach to more complex, long-horizon tasks
like cleaning up a kitchen, where achieving broad coverage
of plausible scenarios via brute-force scaling of robot data
collection is infeasible. In our experiments, we evaluate� 0:5

in entirely new scenes, such as new kitchens and bedrooms
that were not seen in training, showing that our VLA can
generalize to entirely new scenes by leveraging not only
direct �rst-hand experience on the target mobile manipulator
platform, but also information from other data sources. These

sources include data from other (non-mobile) robots, high-
level semantic subtask prediction, and data from the web.
Non-robot data co-training. A number of prior works have
sought to use diversenon-robotdata to improve the generaliza-
tion of robot policies. Prior methods have explored initializing
vision encoders from computer vision datasets [85, 58, 57, 18],
or leveraging off-the-shelf task planners [38, 48, 73, 81]. VLA
policies are typically initialized from a pre-trained vision-
language model, which has been exposed to large amounts
of internet vision and language data [23, 92, 42]. Notably, the
VLA architecture is �exible and allows to map between input
and output sequences of multi-modal vision, language, and
action tokens. As such, VLAs broaden the design space of pos-
sible transfer approaches beyond simple weight initialization,
by supporting theco-training of a single, uni�ed architecture
on not just robot action imitation data, but any dataset that
interleaves one or multiple of the aforementioned modalities.
Prior works have demonstrated that co-training VLAs with
data mixtures used for VLM training [23, 92, 86] can improve
their generalization ability, e.g., when interacting with new
objects or unseen scene backgrounds. In this work, we go
beyond VLM data co-training and design a system for co-
training VLAs with a broader set of robotics-relevant super-
vision sources, including data from other robots, high-level
semantic subtask predictions, and verbal language instructions.
While multitask training and co-training are not new ideas,
we show that the speci�c combination of data sources in our
system enables mobile robots to perform complex and long-
horizon behaviors in entirely new environments. We believe
that this level of generalization, particularly when accounting
for the complexity of the tasks, goes signi�cantly beyond the
results demonstrated in prior works.
Robot reasoning and planning with language.A number of
prior works have shown that augmenting end-to-end policies
with high-level reasoning can signi�cantly improve perfor-
mance for long-horizon tasks [2, 36, 44, 74, 71, 4, 16, 11,
53, 88, 51, 59, 13, 70, 91, 65, 72, 47, 76, 89], particularly
when high-level subtask inference can bene�t from large pre-
trained LLMs and VLMs. Our method also uses a two-stage
inference procedure, where we �rst infer a high-level semantic
subtask (e.g., “pick up the plate”), and then predict the action
based on this subtask. Many prior methods have employed
two separate models for this purpose, with a VLM predicting
semantic steps and a separate low-level policy executing those
steps [2, 71, 13, 24, 70, 72, 47]. Our method uses the same
exact model for both high-level and low-level inference, in
a recipe that more closely resembles chain-of-thought [82]
or test-time compute [39] methods, though unlike embodied
chain-of-thought methods [88, 46, 61], the high-level inference
process still runs at a lower frequency than low-level action
inference.
Robotic learning systems with open-world generalization.
While most robotic learning systems are evaluated in environ-
ments that closely match the training data, a number of prior
works have explored broader open-world generalization. When
the robot's tasks are restricted to a more narrow set of basic



Fig. 3: Model overview. � 0:5 is trained in two stages. First, a pre-training stage combines all of the different data sources to produce an initial VLA with
discrete tokens. This stage uses data from diverse robotic platforms, high-level semantic action prediction, and data from the web. Robotic data uses the FAST
action tokenizer to represent actions as discrete tokens [64]. Second, a post-training stage specializes the model for low-level and high-level inferences for
mobile manipulation, leveraging the most task-relevant data, including verbal instructions from human supervisors. This stage uses �ow matching to represent
the action distribution, enabling ef�cient real-time inference and the ability to represent �ne-grained continuous action sequences. At inference time, the model
�rst infers a high-level subtask, and then predicts the actions based on this subtask.

primitives, such as picking up objects, methods that allow for
task-speci�c assumptions (e.g., grasp prediction, or incorpo-
rating model-based planning and control) have been shown to
generalize broadly, even to entirely new homes [40, 20, 60, 56,
29]. However, such methods do not readily generalize to the
full range of possible tasks that a generalist robot might need
to perform. More recently, large-scale datasets collected across
many domains [41, 68, 63, 67, 14, 49] have been shown to
enable generalization of simple but end-to-end learned tasks to
new environments [33, 31, 67, 69, 26, 49, 28, 64]. However,
the tasks in these demonstrations are still relatively simple,
typically less than a minute in length and often with relatively
low success rates. We show that� 0:5 can perform long, multi-
stage tasks, such as putting all of the dishes in the sink or
picking all of the clothing off the �oor of a new bedroom,
while generalizing to entirely new homes.

III. PRELIMINARIES

Vision-language-action models (VLAs) are typically trained
via imitation learning on diverse robot demonstration
datasetsD, by maximizing the log-likelihood of an action
at (or, more generally, an actionchunk at :t + H ) given an
observationot and a natural language task instruction`:
max� E(a t : t + H ;o t ;` ) �D log

�
� � (at :t + H jot ; `)

�
. The observation

typically contains one or more imagesI 1
t ; :::; I n

t and propri-
oceptive stateqt , which captures the position of the robot's
joints. VLA architectures follow the design of modern lan-
guage and vision-language models, with modality-speci�c
tokenizers that map inputs and outputs to discrete (“hard”) or
continuous (“soft”) token representations, and a large, auto-
regressive transformer backbone that is trained to map from

input to output tokens. The weights of these models are
initialized from pre-trained vision-language models. By encod-
ing policy inputs and outputs into tokenized representations,
the imitation learning problem described above can be cast
as a simple next-token-prediction problem over a sequence
of observation, instruction and action tokens, and we can
leverage the scalable tools of modern machine learning to
optimize it. In practice, the choice of tokenizers for image and
text inputs follows those of modern vision-language models.
For actions, prior work has developed effective, compression-
based tokenization approaches [64], which we use in this
work during pretraining. A number of recent VLA models
have also proposed to represent the action distribution via
diffusion [55, 84, 52] or �ow matching [8], providing a
more expressive representation over continuous-valued action
chunks. During the post-training phase of our model, we will
build on the design of the� 0 model [8], which represents
the action distribution via �ow matching. In this design, the
tokens corresponding to actions receive the partially denoised
actions from the previous step of �ow matching as input, and
output the �ow matching vector �eld. These tokens also use a
different set of model weights, which we refer to as an “action
expert,” analogously to a mixture of experts architecture. This
action expert can specialize to �ow matching-based action
generation, and can be signi�cantly smaller than the rest of
the LLM backbone.

IV. T HE � 0:5 MODEL AND TRAINING RECIPE

We provide an overview of the� 0:5 model and training
recipe in Figure 3. The model weights are initialized from a
standard VLM trained on data from the web, and training then



proceeds in two stages: a pre-training stage intended to adapt
the model to diverse robotic tasks, and a post-training stage
intended to specialize it to mobile manipulation and equip it
with the mechanisms for ef�cient test-time inference. During
pre-training, all tasks, including tasks with robot actions, are
represented with discrete tokens, which leads to simple, scal-
able, and ef�cient training [64]. During post-training, we adapt
the model to also have an action expert, as with� 0, in order to
both represent actions with �ner granularity and enable more
compute-ef�cient inference for real-time control. At inference-
time, the model �rst produces a high-level subtask for the robot
to perform and then, conditioned on this subtask, predicts the
low-level actions via the action expert. We describe the model
architecture below, followed by a description of each of the
phases and their corresponding training tasks.

A. The� 0:5 architecture

The � 0:5 architecture can �exibly represent both action
chunk distributions and tokenized text outputs, with the latter
used both for co-training tasks (e.g., question-answering) and
for outputting high-level subtask predictions during hierar-
chical inference. The distribution captured by the model can
be written as� � (at :t + H ; ^̀jot ; `), where ot = [ I 1

t ; :::; I n
t ; qt ]

consists of the images from all of the cameras and the robot's
con�guration (joint angles, gripper pose, torso lift pose, and
base velocity),̀ is the overall task prompt (e.g., “put away the
dishes”), ^̀ represents the model's (tokenized) textual output,
which could be either a predicted high-level subtask (e.g.,
“pick up the plate”) or the answer to a vision-language prompt
in web data, andat :t + H is a predicted action chunk. We
decompose the distribution as

� � (at :t + H ; ^̀jot ; `) = � � (at :t + H jot ; ^̀)� � ( ^̀jot ; `);

where the action distribution does not depend on`, only on ^̀.
Thus, high-level inference captures� � ( ^̀jot ; `), and low-level
inference captures� � (at :t + H jot ; ^̀), with both distributions
represented by the same model.

The model corresponds to a transformer that takes inN
multimodal input tokensx1:N (we use the term token loosely
here, referring to both discretized and continuous inputs) and
produces a sequence of multimodal outputsy1:N , which we
can write asy1:N = f

�
x1:N ; A(x1:N ); � (x1:N )

�
. Eachx i can

be a text token (xw
i 2 N), an image patch (x I

i 2 Rp� p� 3),
or an intermediate denoising value of a robot action in �ow
matching (xa

i 2 Rd). The observationsot and` form the pre�x
part of x1:N . Depending on the token type, as indicated by
� (x i ), each token can be processed not only by a different
encoder, but also by different expert weights within the trans-
former. For example, image patches are fed through a vision
encoder, and text tokens are embedded with an embedding
matrix. Following� 0 [8], we linearly project action tokensxa

i
into the transformer embedding space and use separate expert
weights in the transformer to process the action tokens. The
attention matrixA(x1:N ) 2 [0; 1]N � N indicates if a token can
attend to another token. Compared to standard causal attention

in LLMs, image patch, textual prompt, and continuous action
tokens use bidirectional attention.

As we want our model to output both text (to answer ques-
tions about the scene or to output next tasks to accomplish)
and actions (to act in the world), the output off is split
into text token logits and action output tokens, respectively�
y`

1:M ; ya
1:H

�
. The �rst M correspond to text token logits that

can be used to samplê` and the laterH tokens are produced
by a separate action expert, as in� 0, and projected via a
linear mapping to continuous outputs used to obtainat :t + H

(see next section). Note thatM + H � N , i.e., not all outputs
are associated with a loss. The robot proprioceptive state is
discretized and input to the model as text tokens. More details
about the architecture are in Appendix E.

B. Combining discrete & continuous action representations

Similarly to � 0, we use �ow-matching [50] to predict con-
tinuous actions in the �nal model. Givena�;!

t :t + H = � at :t + H +
(1 � � )! , ! � N (0; I ), where� 2 [0; 1] is the �ow matching
time index, the model is trained to predict the �ow vector
�eld ! � at . However, as shown in [64], VLA training can be
much faster when actions are represented by discrete tokens,
particularly when using a tokenization scheme that is ef�cient
for compressing the action chunks (e.g., FAST). Unfortunately,
such discrete representations are less well-suited for real-
time inference, because they require expensive autoregressive
decoding for inference [64]. Therefore, an ideal model design
would train on discretized actions but still allow for use of �ow
matching to produce continuous actions at inference time.

Our model is therefore trained to predict actionsboth
through autoregressive sampling of tokens (using the FAST
tokenizer) and iterative integration of the �ow �eld, combining
the best of both worlds. We use the attention matrix to ensure
that the different action representations do not attend to each
other. Our model is optimized to minimize the combined loss

ED ;�;!

h
H

�
x1:M ; f `

� (ot ; `)
�

+ �



 ! � at :t + H � f a

� (a�;!
t :t + H ; ot ; `)




 2

i
; (1)

where H (x1:M ; y`
1:M ) is the cross entropy loss between the

text tokens and predicted logits (including the FAST encoded
action tokens),ya

1:H = f a
� (a�;!

t :t + H ; ot ; `) is the output from the
(smaller) action expert, and� 2 R is a trade-off parameter.
This scheme enables us to �rst pre-train our model as a
standard VLM transformer model by mapping actions to text
tokens (� = 0 ), and then add additional action expert weights
predicting continuous action tokens in a non-autoregressive
fashion for fast inference in a post-training stage. We �nd that
following this procedure, which is further explained below,
leads to stable pre-training and excellent language following
abilities of the VLA model. At inference time we then use
standard autoregressive decoding for text tokens^̀ followed
by 10 denoising steps, conditioned on text tokens, to produce
actionsat :t + H .



Fig. 4: Examples from pre-training and post-training tasks. � 0:5 is pre-trained on data from mobile manipulators (MM), non-mobile robots in diverse
environments (ME), and cross-embodiment data collected under laboratory conditions (CE), as well as high-level subtask prediction (HL), and multi-modal
web data (WD). In a post-training phase, we additionally use verbal instructions (VI ), and omit the laboratory cross-embodiment data (CE) to focus the model
on mobile manipulation and diverse environments. The �gure displays an exemplary subset of the tasks in each category.

C. Pre-training

In the �rst training stage,� 0:5 is trained with a broad range
of robot and non-robot data, which we summarize below and
illustrate in Figure 4. It is trained as a standard auto-regressive
transformer, performing next-token prediction of text, object
locations, and FAST encoded action tokens.
Diverse Mobile Manipulator data (MM). We use about 400
hours of data of mobile manipulators performing household
tasks in about 100 different home environments, some of
which are shown in Figure 7, using the robots in Section IV-E.
This slice of the training set is the most directly relevant to our
evaluation tasks, which consist of similar cleaning and tidying
tasks in new, unseen, home environments.
Diverse Multi- Environment non-mobile robot data (ME).
We also collected non-mobile robot data, either with a single
arm or two arms, in a variety of home environments. These
arms were �xed to surfaces or mounting platforms, and
because they are signi�cantly lighter and easier to transport,
we were able to gather a more diverse dataset in a wider range
of homes with them. However, this ME data comes from a
different embodiment than the mobile robots.
Cross-Embodiment laboratory data (CE). We collected data
for a wide range of tasks (e.g., bussing a table, folding shirts)
in the laboratory, with simpler tabletop environments and a
variety of robot types. Some of these tasks are highly relevant

to our evaluation (e.g., putting dishes in a bin), while others
are not (e.g., grinding coffee beans). This data includes single-
arm and dual-arm manipulators, and both static and mobile
bases. We also include the open-source OXE dataset [15]. This
dataset is an extended version of the dataset used by� 0[8].
High-Level subtask prediction (HL). Breaking down high-
level task commands such as “clean the bedroom” into shorter
subtasks like “adjust the blanket” and “pick up pillow”, similar
to chain-of-thought prompting for language models, can help
a trained policy reason about the current scene and better
determine the next action. For robot data in MM, ME, and
CE where the task involves multiple subtasks, we manually
annotate all data with semantic descriptions of the subtasks and
train � 0:5 to jointly predict the subtask labels (as text) as well
as the actions (conditioned on the subtask label) based on the
current observation and high-level command. This naturally
leads to a model that can act both as a high-level policy
(outputting subtasks) and low-level policy that executes actions
for these subtasks. We also label relevant bounding boxes
shown in the current observation and train� 0:5 to predict them
before predicting the subtask.
Multi-modal Web Data (WD). Finally we include a diverse
set of web data involving image captioning (CapsFusion [87],
COCO [12]), question answering (Cambrian-7M [77], PixMo
[19], VQAv2 [32]), and object localization in pre-training. For
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